UCAN

UCAN TORPEDO[®] BOLT

► DESCRIPTION

UCAN TORPEDO[®] BOLT is an excellent anchoring solution for medium duty applications. TORPEDO[®] is available in zinc plated and mechanically galvanized carbon steel, as well as types 410 and 316 Stainless Steel. For this reason, TORPEDO[®] can fulfill the widest variety of applications in the most economical manner.Matched with a standard UCAN ANSI tolerance drill bit, this fastener exhibits consistently high load values. UCAN TORPEDO[®] BOLT installs quickly leaving the clean appearance of a finished hex washer head on the working surface.

► FEATURES

- Grade 316 stainless UTB for high corrosion resistance applications. Also for exterior anchoring in normal environmental condition
- Use with UCAN standard ANSI compliant drill
- Fast installation and reduced edge distance requirements, compared to mechanical expansion anchors.
- One piece fastener with finished hex flange head and locking under-head serration
- Galvanized Torpedo Aster Screw with proprietary Aster thread facilitates ease of installation
- Anchor can be set with an impact or manual socket wrench.
- Removable–Ideal for temporary anchoring applications.
- Reusable–Reusing the anchor reduces the holding power and is not recommended.
- Anchor size is stamped on head for easy identification and

► TYPICAL APPLICATIONS

- Racking, Railing, Sill plates, Stadium seating.
- Tilt-up braces, Formwork, Anchoring equipment

LIMITATIONS

Not recommended for installation into uncured concrete(less than 7 days old).

LISTING AND APPROVALS

ICC-ES® Listed ESR- 4596 UTB 12212, UTB 123, UTB 124, UTB 125 & UTB 126

► MATERIAL SPECIFICATIONS

Properties	Carbon Steel	Stainless Steel	Stainless Steel - bimetal					
Anchor body	Heat treated carbon steel	Heat treated carbon steel steel						
Head style	Hex flange head with locking serrations							
Corrosion protection	Mechanically galvanized as per ASTM B-695, Class 65, Type 1	410 stainless steel, with RUSPRO ^{® coated}	316 Stainless steel, passivated, with yellow zinc plating on cutting tip					

► INSTALLATION INFORMATION

► INSTALLATION INSTRUCTION¹

Drill hole to the specified

diameter and depth

Blow out dust from

the hole

Place anchor in drilled hole

Apply installation torque to set anchor

¹ When using impact wrench, there is a risk of over-tightening and damaging the screw, impact tool may not correlate properly with the above setting torques. Over torquing can damage the base material, anchor and/or reduce its holding capacity. Use calibrated hand torque wrench to finish the installation.

► TECHNICAL DATA FOR CARBON STEEL UTB FOR LIMIT STATE / STRENGTH DESIGN IN CRACKED AND UNCRACKED CONCRETE

			Nominal Anchor diameter
Characteristic	Symbol	Unit	¹ / ₂ -inch
Nominal Anchor Diameter	d	in	1/2
	a	<u>(mm)</u>	1/2
Nominal Drill Bit Diameter	d _{bit}	(mm)	(12.7)
Nominal Embodment Depth	h	in	3
Nominal Embedment Depth	П _{пот}	(mm)	(76)
Effective Embedment Denth	h	in	2.28
Ellective Ellibedillent Deptil	11 _{ef}	(mm)	(58)
Minimum Hole Depth	h	in	3 1/4
	hole	(mm)	(83)
Fixture Hole Diameter	d_f	in	5/8
		(mm)	(15.9)
Maximum Installation Torque	T	ft.lbs	55
Maximum installation forque	l inst,max	(kN.m)	(75)
Maximum immediate structure and to warrie water	- T	ft.lbs	380
Maximum impact wrench torque rating	I impact.max	(kN.m)	(515)
Misimum Commente Thislerson	4	in	4 1/2
Minimum Concrete Thickness	n _{min}	(mm)	(114)
Critical Edge Distance		in	4
Critical Edge Distance	C _{ac}	(mm)	(102)
Misimum Edge Distance	_	in	2
Minimum Edge Distance	C _{min}	(mm)	(51)
Minimum Coopies		in	3
	s _{min}	(mm)	(76)

TABLE 1- TORPEDO BOLT SCREW ANCHOR INSTALATION INFORMATION¹

¹ The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

TABLE 2 - RESISTANCE FACTORS FOR LIMIT STATE DESIGN IN ACCORDANCEWITH CSA A23.3-14, ANNEX D1

Setting information	Symbol	Units	Nominal Anchor Diameter
Concrete material resistance factor	Φ _C	-	0.65
Steel material resistance factor	ϕ_{S}	-	0.85
Strength reduction factor for tension, steel failure modes	R		0.80
Strength reduction factor for shear, steel failure modes	R		0.75
Strength reduction factor for tension, concrete	D	Cond. A	1.15
failure modes	ĸ	Cond. B	1.00
Strength reduction factor for Shear, concrete failure	R	Cond. A	1.15
modes	K	Cond. B	1.00

TABLE 3 - TORPEDO BOLT SCREW ANCHOR DESIGN INFORMATION^{1,2,3,4}

Characteristic	Symbol	Unit	Nominal Anchor diameter ¹ / ₂ -inch							
Nominal Embedment Depth	h _{nom}	in (mm)	3 (76)							
Anchor Category	1, 2 or 3	-	1							
Steel Strength in Tension and Shear										
Minimum specified ultimate strength	f_{uta}	psi (N/mm²)	147,000 (1,014)							
Minimum specified yield strength	f_y	psi (N/mm²)	117,600 (811)							
Effective stress area (screw anchor body)	A _{se}	in ² (mm ²)	0.193 (124.5)							
Steel Strength in Tension	N _{sa}	lb (KN)	24,125 (107.3)							
Strength Reduction Factor for Steel Failure in Tension	Ø	-	0.65							
Steel Strength in Shear	V _{sa}	lb (KN)	6.570 (29.2)							
Steel Strength in Shear, Seismic	V _{sa,eq}	lb (KN)	6.570 (29.2)							
Strength Reduction Factor for Steel Failure in Shear	Ø	-	0.60							
Pullout Stren	gth in Tensio	n³								
Pullout Strength in Uncracked Concrete	N _{p,uncr}	lb (KN)	-							
Pullout Strength in Cracked Concrete	N _{p,cr}	lb (KN)	-							
Pullout Strength in Cracked Concrete, Seismic	N _{p,eq}	lb (KN)	-							
Concrete Breakout	Strength in 1	Tension								
Effective embedment	h _{ef}	im (mm)	2.28 (58)							
Effectiveness Factor for Uncracked Concrete	k _{uncr}	-	27							
Effectiveness Factor for Cracked Concrete	k _{cr}	-	17							
Strength Reduction Factor for Concrete Breakout Strength in Tension	Ø	-	0.65							
Axial stiffness in service load range in uncracked concrete	ß _{uncr}	lb/inch (N/mm)	189,880 (33,250)							
Axial stiffness in service load range in cracked concrete	ß _{cr}	lb/inch (N/mm)	101,150 (17,715)							
Concrete Breakou	it Strength in	Shear								
Nominal Diameter	d _a	in (mm)	1/2 (12.7)							
Load Bearing Length of Anchor	le	in (mm)	2.28 (58)							
Reduction Factor for Concrete Breakout Strength in Shear	Ø	-	0.70							
Concrete Pryout	Strength in S	hear								
Coefficient for Pryout Strength	k _{cp}	-	1.0							
Reduction Factor for Pryout Strength in Shear	Ø	-	0.70							

¹The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable. ²All values of Ø were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of Ø must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate Ø factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

³Where no value is reported for pullout strength, this resistance does not need to be considered.

⁴ For Limit State Design as per CSA A23.3-19 Annex D, material resistance factors (Φ) and resistance modification factor (R) listed in Table 2 shall be used.

► TECHNICAL DATA FOR CARBON STEEL UTB FOR ALLOWABLE STRENGTH DESIGN IN UNCRACKED CONCRETE

Characteristic	Symbol	Unit	Nominal Anchor diameter							
Anchor diameter	d _a	in.	1/4	3/8		5/8		3/4		
Drill bit diameter	d _{bit}	in.	1/4	3,	/8	5/8		3/4		
Clearance hole diameter	d_{f}	in.	3/8	1.	/2	3/4		7/8		
Installation Torque	T _{inst}	ft-lbs	19	25		85		150		
Nominal embedment	h _{nom}	in.	1-3/4	2 3-3/4		2	3-3/4	3-3/4	4-1/2	
Effective embedment	h _{ef}	in.	1-1/2	1-3/4	3-1/2	1-3/4	3-1/2	3-1/2	4-1/4	
Minimum hole depth	h _o	in.	2	2-1/2	4-1/4	2-1/2	4-1/4	4-1/4	5	
Critical edge distance	-	in.	2	3-1/2 5-1/2		3-1/2	5-1/2	5-1/2	6-3/4	
Minimum edge distance	-	in.	1-3/4	1-3/4		1-3/4		1-3/4		
Critical anchor spacing	-	in.	3	4-1/2		7-1/2		9		
Minimum anchor spacing	-	in.	1	1-1/2		2-1/2		3		
Head height	-	in.	1/4	3/8		19/32		45/64		
Washer OD	-	in.	1/2	3/4		1-5/32		1-3/8		
Wrench socket size	-	in.	7/16	9/	16	1-5/16		1-1/8		

TABLE 4 - INSTALLATION DETAILS

TABLE 5 - ULTIMATE AND ALLOWABLE LOAD DATA¹

Anchor	Drill bit	Nominal		Allowable Load Data				Ultimate Load Data				
diameter	diameter	embedment		3000 psi concrete 6000 psi concrete		3000 psi	concrete	6000 psi concrete				
in.	in.	in.	Units	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	
1/4	1/4	1-1/2	lbs	181	430	256	670	725	1719	1025	2680	
			kN	0.81	1.91	1.14	2.98	3.22	7.65	4.56	11.92	
1/4	1/4	2-1/2	lbs	610	430	863	670	2440	1719	3450	2680	
., .	., .	2.172	kN	2.71	1.91	3.84	2.98	10.85	7.65	15.35	11.92	
3/8	3/8	2	lbs	916	892	1295	1742	3664	3567	5182	6967	
5/0	5/0		kN	4.07	3.97	5.76	7.75	16.30	15.87	23.05	30.99	
3/8	2/0 2/0	3-1/2	lbs	2080	2050	2941	3007	8319	8199	11764	12030	
5/6 5/6	5/0		kN	9.25	9.12	13.08	13.38	37.00	36.47	52.33	53.51	
5/8 5/8	2	lbs	864	1164	1221	1643	3454	4657	4885	6573		
		kN	3.84	5.18	5.43	7.31	15.37	20.72	21.73	29.24		
E /0	0 5/0	3-1/2 lbs kN	lbs	2324	2389	3287	3168	9296	9557	13147	12670	
5/6	5/6		kN	10.34	10.63	14.62	14.09	41.35	42.51	58.48	56.36	
214	2/4		lbs	1078	1569	1525	2254	4313	6276	6099	9015	
3/4 3/4	3/4	2-1/2	kN	4.80	6.98	6.78	10.03	19.18	27.92	27.13	40.1	
214	244		lbs	2632	3167	3723	4729	10530	12667	14891	18918	
3/4	3/4	4	kN	11.71	14.09	16.56	21.04	46.84	56.35	66.24	84.15	

¹ Note: The data presented in this table is based on independent laboratory testing at critical anchor spacing and edge distance.

• UCAN Fastening Products, a division of British Fastening Systems Ltd. • 155 Champagne Dr., Unit 10, Toronto, ON M3J 2C6 • Tel.: 416.631.9400 • www.ucanfast.com

► LOAD ADJUSTMENT FACTORS (ALLOWABLE STRESS DESIGN)

Anchor Spacing

Critical spacing		Minimum	n Spacing	Reduction Factor		
Tension	Shear	Tension	Shear	Tension	Shear	
3"	3"	1"	1"		0.7	
4-1/2"	4-1/2"	1-1/2"	1-1/2"			
6"	6"	2"	2"	0.5		
7-1/2"	7-1/2"	2-1/2"	2-1/2"			
9"	9"	3"	3"			
	Critical Tension 3" 4-1/2" 6" 7-1/2" 9"	Critical spacing Tension Shear 3" 3" 4" 4" 6" 6" 7-1/2" 7-1/2" 9" 9"	Critical spacing Minimum Tension Shear Tension 3" 3" 1" 4.1/2" 4.1/2" 1-1/2" 6" 6" 2" 7-1/2" 7-1/2" 2-1/2" 9" 9" 3"	Critical spacing Minimum Spacing Tension Shear Tension Shear 3" 3" 1" 1" 4-1/2" 4-1/2" 1-1/2" 1-1/2" 6" 6" 2" 2" 7-1/2" 7-1/2" 2-1/2" 2-1/2" 9" 9" 3" 3"	Critical spacing Minimum Spacing Reduction Tension Shear Tension Shear Tension 3" 3" 1" 1" 1 4-1/2" 4-1/2" 1-1/2" 1-1/2" 1 6" 6" 2" 2" 0.5 7-1/2" 7-1/2" 2-1/2" 3 " 3 "	

Edge Distance

Diameter	Critical Edge Distance		Minimum Eo	lge Distance	Reduction Factor		
	Tension	Shear	Tension	Shear	Tension	Shear	
1/4							
3/8	1.5 x h _{ef}		0.8 x h _{ef}	1-3/4"	0.75	0.25	
1/2							
5/8							
3/4							

Note: Reduction factor at critical distances equals 1.0. For edge and spacing distances between critical and minimum distances, use linear interpolation. Reduction factors are cumulative.